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ABSTRACT 

A simple ~ap~cal-nume~cal method, based on dynamic thermogravimetry. is proposed 
to solve and calculate the activation energy of solid-phase reactions. The method gives, very 
easily and with remarkable accuracy (deviation less than 5%) compared with the sophisticated 
calculation of the Coats and Redfem’s equation, the activation energy for the different g( (Y) 
functions. 

INTRODUCTION 

The deter~nation of the kinetic parameters ( Ea, k,, I?) using thermo- 
gravimet~ was carried out using the general equation for reactions in the 
solid state [l] 

g(4 =jT;W)dt 

This equation can be solved under isothermal [g(a) = kt] or dynamic condi- 
tions. In the latter case, the integral cannot be solved exactly and several 
approximations have been given in the literature. Using the more common 
Coats and Redfern approximation [2], we have 

In g( a)/T2 = In K,R/PE;,(l - 2RT/E,) - E,/RT 01 

For each g( Ly) (Table 1) and n value, a program must be developed in order 
to obtain accurate results. Bearing in mind that the solution of the kinetic 
problems by dynamic TG is not unique (an isothermal treatment is neces- 
sary) we have attempted to replace this complicated mathematical process by 
a more simple but accurate enough method. 

* To whom correspondence should be addressed. 
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TABLE 1 

Kinetic functions, g(a), used in their integral form 

Mechanism g(a) 

Nucleation controlled 
Exponential law 
Power law 

Growth controlled 
for n = 1 

Nucleatron - Growth controlled 
Avrami-Erofeev 
Prout-Tompkins 

Diffusion controlled 
One-dimensional 
Two-dimensional 
Three-dimensional 
Three-dimensional 

In a’ 
at/n 

[l -(l- a)‘-“]/(1 - n) 
[ -ln(l- a)] 

[ - ln(1 - a)]“” 

ln]a/(T - aI1 

a* 
a +(l- a) ln(l- a) 
[l -(l- a)tq2 
(l-2/3a)-(l- (Y)*/~ 

In this work we develop several expressions which relate E, with the 
temperature at (Y = 0.5 and with AT between cx = 0.2 and 0.8 (rate of the 
process). From these data, E, can be calculated by a very simple numerical 
or graphical method. 

RESULTS AND DISCUSSION 

All the calculations have been carried out assuming linearity of the part of 
the thermogram between 0.2 < a < 0.8 (this assumption is valid in most 
cases). Furthermore, before proceeding to calculate E, by a graphical 
method from dynamic TG, the following must be taken into account. The 
new graphical method is based on the variation of the activation energy of a 
process with two parameters: the temperature for which (Y = 0.5 (hereafter 
refered to as T); and the temperature difference between (Y = 0.2 and 0.8. 
This difference corresponds to the slope of the thermogram and we shall call 
it AT. 

We shall now develop a relationship between the E, value of a process 
with respect to T and AT. 

Relationship between E, and T 

Figure 1 shows two parallel thermograms with a marked variation (T, and 
T?). The linearity in this region makes AT = 2n. If we now apply the Coats 
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5g. 1. Two parallel thermograms with different T at (Y = 0.5. 

and Redfern equation in an integrated form to the four points for which 
(Y = 0.2 and 0.8, we obtain 

ln g(a,.,)/(T, - n)’ = ln K.,,WPE,, - E&T, - n) (2) 

ln g(%,)/(T, - n)‘= ln K$/PE,, - E+/R(TZ - n) (3) 

ln g(ao.s)/(T, + n)‘= ln &,,W&, - E,,/R(T, + n) (4) 

ln g(a,.s)/(T, + n>’ = ln GY$VPE,~ - EJR(T2 + n) (5) 

Subtracting eqns. (2) and (5) from eqns. (3) and (4), and operating, we 
obtain 

Ea,= (Ea,/(T,Z-n*) 

+R/nln[(T,-n)(T,+n)/(T,-n)(T,+n)])(T’-rz*) (6) 

The logarithmic term is practically zero in this expression; furthermore, n* is 
also very small in front of T*. Thus, eqn. (6) becomes 

E,&, = C/T,2 (7) 

It was found that the error made using these two simplifications, with 
respect to the general equation, was only about 0.25%. 



110 

sot 

E,WJ) 

I I I I 1 

100 200 300 406 500 

T t’C) 

Fig. 2. Parabolic dependence between E, and 7’. 

On plotting the above equation (7), Fig. 2 (which shows the parabolic 
dependence between I?, and 2’) is obtained. 

Relationship between E, and AT (rate of the process; slope of the curve) 

To derive this relationship let us take two curves passing through the same 
point, cy = 0.5 (identical T), but with a very different slope (the rate of each 
process is different) (Fig. 3). Let us assume for our calculation that we use a 
given curve and that the activation energy is known. We are going to find the 
variation of the activation energy of another process with T,, on changing 
the slope (m). Again applying the Coats and Redfern equation to the four 
points for which cy = 0.2 and 0.8, we find the following expressions 

In g(a&‘(G - n)‘= In &,R/P&, - EB,/R(T, - n) (8) 

ln g(~O.M~ + n)‘= ln G$V’PE,, - EB,/R(T, + n) (9) 
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ln d ao.* >A T, - m )’ = ln K&PEa, - E,JN T2 - m ) (10) 

ln dwd/(T2 + m)* = ln Ko2R/PEa2 - Ea2/R(T2 + m) (11) 
Subtracting eqns. (9) and (10) from eqns. (8) and (11) and rearranging, we 

obtain 

Ea2 = ( E,,n/Tf - n* + R ln[ ( T2 - m)( Ti + n)/( Ti - n)( T, + m)] ) 

x (T; - ,2)/m (12) 

This equation cannot be simplified, but obviously the most important factor 
is m, since this is the only divisor. Therefore, the E, value of the process 
with slope m depends essentially on m. 

Graphical method 

Applying the two above assumptions and using the Coats and Redfern 
equation to the curve T, (which is really the unknown), we obtain eqns. (2) 
and (4). From eqns. (2) and (4) we can find the value of E, 

E, = -R(T2 - n2)/2n l&%.*w+ 4’/d%.*w= 4’1 (13) 

We can now plot eqn. (13) for each g(a) function given in the literature [l] 
taking l/AT as ordinate and E, as the abscissa, but then the plot would not 
have a general use. In order to obtain a generalized plot, let us assume that 

Fig. 3. Two curves with identical T at a = 0.5 but different slope. 
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K). In this way, any E, value will be related to the 
for T = 100°C according to eqn. (7). Thus, we should use 

E,/3732 rather than E, as the abscissa; the value found, multiplied by Ti, is 
the real value of E, (Fig. 4). 

In order to draw the plots in the units given, we have previously calculated 
the equations of the straight lines corresponding to the more usual models 
and orders of reaction. The corresponding plots ( y = a,x + aO, with y = l/T 

for eacn g(a). A = Avram moael; b = growrn moael; u = alIrusion 
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TABLE 2 

Parameters of the equations of the straight lines corresponding to the following models: 
D = diffusion; AV = Avrami; GR = growth 

Parameters r2 

Dl 43.432 
D2 38.802 
D3 37.187 
D4 34.273 
AV3 182.71 
AV2 121.86 
AVl 60.924 
GRO.5 72.717 
GRO 86.866 

2.019~10-~ 
1.814~10-~ 
1.723 x lo-’ 
1.602 x lo-’ 
8.247 x 1O-3 
5.518 x 1O-3 
2.811 x 1o-3 
3.328 x 1O-3 
3.935 x 1o-3 

1.~0 

1.0000 
1 .OOOo 
1 .OOoo 
1 .oooo 
1 .oooo 
1 .ooOO 
1.0000 
1 .oooo 

and x = kJ/3732) are given in Table 2. As can be seen, linear regression 
coefficients, Y*, are always 1.0000. 

For a given case, the use of these plots is even more simple than the 
graphical resolution, since the results can be obtained from the knowledge of 
T and AT for a given dynamic thermogram, with a pocket calculator. 

Testing of the method 

In order to check the accuracy of the proposed graphical method, we have 
calculated the values of E, of several compounds for which we had previ- 

TABLE 3 

Comparison of results ( Ecalc with the Coats and Redfern method, and Esraph) for the model 
of nucleation-growth (Avrami) with n =l. The left-hand symbol indicates [M(W,O)- 

(NH,),1 3+ and the right-hand symbol indicates [M(CN),]*- (M = Ni. Pd. Pt) and 
[CY$CN),]~-. The calculated E, values are given in a previous work of the authors [3] 

Product T (a! = 0.2) T (a: = 0.5) T (a = 0.8) Al- l/AT E atca~ct Eafgraph) g dif. 

Co-Ni 103.5 115 123 19.5 5.128x10-* 123 120 - 2.4 
Co-Pd 105.5 115 121.5 16 6.250x10-* 156 148 - 5.1 
Co-Pt 99.5 109 116 16.5 6.061 x10-’ 141 138 -2.1 

Rh-Ni 116.5 122.5 128 11.5 8.696~10-~ 227 216 -4.8 
Rh-Pd 92 99.5 105 13 7.692~10~~ 172 169 -1.7 
Rh-Pt 72 81 96 24 4.167x lo-* 75 80 f 6.7 

Ir-Ni 133 140.5 144 11 9.091~10-~ 232 247 + 6.4 
Ir-Pd 126 134 138 12 8.333x10-’ 205 218 +6.3 
Ir-Pt 98 106 116.5 18.5 5.405x10-* 112 121 +8.0 

co-co 173 182 190 15 6.667~10-~ 199 216 -t-8.5 
Rh-co 163 174 182 19 5.263x10-* 159 163 + 2.5 
Ir-Co 174 181.5 185 11 9.091 x10-2 314 299 - 4.8 



114 

TABLE 4 

Calculated (Coats and Redfern method) and graphical values of E, (kJ mol-‘) for all g(a) 
for [Co(H,O)(NH,),],[Ni(CN),], (Ni-Co): AV = Avrami; GR = growth; D = diffusion 

Kinetic model: AV3 AV2 AVl GR0.5 GRO Dl D2 D3 D4 

E, (talc) 37 59 123 84 102 175 197 206 224 
E, (graph) 35.5 56.6 119.8 82.1 99.3 170.8 191.9 ZOO.6 218.2 
% dif. 4.0 4.2 2.6 2.3 2.7 2.4 2.6 2.6 2.6 

ously calculated their E, values using the complete Coats and Redfern 
equation for all g(a) functions and all orders. Table 3 gives the comparison 
of results for the model of nucleation-growth, with n = 1. We have also 
indicated in Table 4 the calculated values of all g(cu) functions for one of the 
products, [Co(H,O)(NH,),],[Ni(CN),], (Co-Ni). 

CONCLUSIONS 

In view of the results, we may conclude that our proposed graphical 
method is semi-quantitative with few values carrying errors greater than 5%. 

Bearing in mind that dynamic TG is only a complementary tool for the 
resolution of kinetic parameters (the resolution must be carried out using 
isothermal methods), we believe that the complicated calculations involved 
in using the Coats and Redfern equation can be replaced by our method. 
However, as we have indicated, an isothermal calculation is necessary to find 
the real values of the activation energy. 
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